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LIQUID CRYSTALS, 1996, VOL. 20, No. 6, 797-806 

Elastic constants of uniaxial nematic liquid crystals: a comparison 
between theory and experiment 

by SHRI SINGH 
Department of Physics, Banaras Hindu University, Varanasi-221 005, India 

(Received 25 February 1995; injnal  form 28 December 1995; accepted 12 January 1996) 

Using the unified molecular theory developcd in our earlier paper (1992, Phys. Rev. A, 45, 
974) we study in detail the influence of molecular interactions on the fundamental elastic 
properties of uniaxial nematic liquid crystals composed of molecules of cylindrical symmetry. 
The expressions for the elastic moduli associated with ‘splay’, ‘twist’ and ‘bend’ modes of 
deformations are written in terms of order parameters characterizing the nature and amount 
of ordering in the phase and the structural parameters which involve the generalized spherical 
harmonic coefficients of the direct pair correlation function of an effective isotropic liquid. 
Numerical calculations are done for a model system, the molecules of which have prolate 
ellipsoid of revolution symmetry and interact via a pair potential having both repulsive and 
attractive parts. The repulsive interaction is represented by a repulsion between hard ellipsoids 
of revolution. The attractive potential is represented by the dispersion and electrostatic 
interactions. Results for the elastic constants are reported for a range of molecular length- 
width ratio, temperature, density and molecular parameters and are compared with the 
experimental values of p-azoxyanisole (PAA) and 4-n-octyloxy-4-cyanobiphenyl (80CB). It 
is found that the inclusion of electrostatic interactions reduces the values of the ratios K J K ,  
and K , / K , .  The absolute values of the elastic constants and their ratios are in good agreement 
with the experimental and computer simulation values. The temperature dependence of the 
elastic constants and their ratios is studied. It is observed that the twist elastic constant has 
a weak temperature dependence but a pronounced influence is observed on the bend moduli. 
We also observed a pronounced increase in the values of the twist and bend elastic constants 
on approaching the nematic-smectic A transition temperature. 

1. Introduction 
Using weighted density functional formalism [ 11, in 

a previous paper [2] (hereafter referred to as I and SSR 
theory), we developed a unified molecular theory to 
derive an expression for the distortion free-energy of 
ordered phases in molecular systems in terms of the 
order parameters characterizing the phase structure and 
the molecular correlation functions of an effective iso- 
tropic liquid. This theory can be used to study the elastic 
constants of molecular ordered phases (liquid crystals, 
plastic crystals and crystalline solids). The theory was 
applied [2,3] to derive expressions for the elastic con- 
stants of uniaxial phases (uniaxial nematic, Nu, and 
smectic A, S,) and the nematic biaxial phase (ortho- 
rhombic nematic, Nb) of liquid crystals. The purpose of 
the present paper is twofold: we study in detail the 
influence of the molecular interactions, temperature, 
density, etc., on the elastic constants of uniaxial nem- 
atic liquid crystals composed of molecules of cylindri- 
cal symmetry and compare the numerical results with 
the experimental data of p-azoxyanisole (PAA) and 
4’-n-octyloxy-4-cyanobiphenyl ( 80CB). 

On the basis of symmetry arguments the elastic con- 

tinuum theory [ 4,5] (long-wavelength deformation) 
shows that the distortion free-energy density of a uniaxial 
nematic phase is composed of three invariants K , ,  K ,  
and K 3  which are known as the Frank elastic constants 
and are associated, respectively, with the splay, twist 
and bend distortion modes. The distortion free-energy 
can be written as 

dr [ K ,  (V * ii)2 + K,(ii * V x ii)’ 

+ K 3 ( i  x V x ii)2] ( 1 )  

where a(r) is the director at the point r and the subscript e 
stands for the distortion. It is difficult t o  measure cxperi- 
mentally the absolute values of these elastic constants 
[6-91. It is the ratios K,/K,  and K 3 / K ,  which can be 
measured more accurately. These moduli are temper- 
ature and density dependent. The dependence on the 
density is pronounced. A number of measurements are 
reported C9-111 which show that K ,  and K ,  have weak 
temperature dependences whereas K ,  rapidly increases 
with temperature and that when the nematic-smectic A 
transition temperature is approached from above, K ,  
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798 S. Singh 

does not show any sharp change but K ,  and K ,  increase 
anomalously. 

This paper is organized as follows. Assuming that the 
readers are familiar with the density functional formalism 
[ 1 ] and the details of the SSR theory [a] we summarize 
in the following section a brief account of the theory 
and the working equations. Section 3 is devoted to the 
numerical calculations and gives a detailed description 
(variation with temperature, density and molecular para- 
meters) of the elastic constants. The paper ends with § 4, 
the summary and conclusions. 

2. Brief outline of SSR theory and working equations 
Elasticity is concerned with the behaviour of the 

Helmholtz free-energy A[p(x)] with respect to a small 
deformation of the system away from its equilibrium 
state. The square bracket indicates that A is a function 
of the single-particle density distribution p ( x )  where 
x(  = r,  a)  specify both the position and orientation of a 
molecule. Adopting the procedure as outlined in the 
I and elsewhere [ 11 we express the elastic free-energy as 
L2l 

1 
PAACI~I = - -  2 j d x ,  Id., [Pe(X1)Pe(X,) 

- P*fx,)po(x,)l C‘2’(xl> x,; PSI ( 2 )  
where pe(x,) and po(x,) represent, respectively, the singlet 
distribution functions corresponding to the deformed 
and undeformed phases. In an approach [ 121 as followed 
by us 121, p, is replaced by a weighted density, p [ p ] ,  
of the reference fluid. Here p[p] is vicwed as a function 

Assuming that molecule 1 is at the origin with a 
principal director fi(rl) pointing in the direction of the 
space-fixed (SF) Z axis and molecule 2 is at  a distance 
yIz from the origin where fi(r,)  represents the direction 
of the local principal director (see figure 1 in [2]) and 
using the rotational properties of generalized spherical 
harmonics [ 131, the SSR theory gives [2] 

of p(x). 

crystals, plastic crystals and crystalline solids). po is the 
mean number density of the system and i12 = rl2/1rl21 is 
a unit vector along the intermolecular axis. Dh,,(Q) are 
the generalized spherical harmonics, G is the reciprocal 
lattice vector of the crystalline structure that might bc 
present in the ordered phase and C,( I ,  1,1, J X , W I J ~ )  are 
the Clebsch-Gordon coefficients. Az(r,,) represents the 
angle between the principal directors at r l  and r2 and 
C( 1, l2  1; n, n,; r12) are the harmonic expansion coefficients 
of the direct pair correlation function (DPCF) of an 
isotropic liquid in terms of generalized spherical harmon- 
ics. The order parameters, Qlrnn(G), which measure the 
nature and amount of ordering, are defined as 

( 4 )  

Since no positional correlation exists in a nematic liquid 
crystal. equation (4) reduces to 

&,( 0 )  = (21 + 1 ) dQ f(n) Drn(R) ( 5 )  

where f(R) is the orientational singlet distribution 
function normalized to unity 

I 
dS2 f(n) = 1. ( 6 )  Ĵ  

Exploiting the molecular and phase symmetries we 
obtain for a uniaxial nematic phase of axially symmetric 
molecules, 

where pn is the nematic number density and P, are the 
Legendre polynomial order parameters. The subscript 
12 has been dropped. The prime on the summation 
indicates that l1 and I ,  are even. 

Confining the variation of ii(r,) in a plane Y,JAz(r)) 
is expressed [2] in terms of the distortion angle which 
is assumed to be small. Performing the integration over 
i and comparing equation ( 7 )  with equation ( l ) ,  we get 
the expression for the Frank elastic constants. The result 
can be written as an expansion series 
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Elastic constants of uniaxial nematics 799 

where i = 1, 2 and 3 stand for the splay, twist and bend 
elastic constants, respectively. The terms of series (8) 
were evaluated in the I [2] for 2 < I,, 1 2 <  8. We write 
the explicit expressions for the first few terms of the 
series as 

(9 4 

and 

In these expressions J,,,,, is defined as 

JllL21 = r4 dr CIllZl (4  (12) s 
and are called the structural parameters. 

3. Calculations and results 
We consider a model system of molecules having 

prolate ellipsoidal symmetry and interacting via a pair 
potential 

u(r, a,, n,) = (uHER + udd + udq + uqq + udis)(r, a,, a,) 
(13) 

where uHER represents the repulsion between hard ellips- 
oids of revolution (HER) parametrized by the length- 
to-width ratio x = a/b (2a and 2b denote, respectively, 
the length of the major and minor axes of the ellipsoids). 
The terms with superscripts dd, dq, qq and dis indicate, 

respectively, the interactions arising due to the dipole- 
dipole, dipole-quadrupole, quadrupole-quadrupole and 
dispersion forces. The explicit forms of these interactions 
are given in I [2]. 

It is obvious from equations (8)-(12) that the struc- 
tural parameters JIll2,(equation ( 12)), the density and 
the order parameters P,, P4,. . . , are the input parameters 
in the calculation of the elastic constants. As shown in 
I since the structure of the isotropic liquid is primarily 
controlled by a harsh repulsive interaction, a first order 
perturbation theory can be used [2,14,15] to evaluate 
the direct pair correlation function (DPCF) of the 
system. The spherical harmonic coefficients of the DPCF 
can be obtained [ 161 by solving the Ornstein-Zernike 
(OZ) equation using the Percus-Yevick (PY) closure 
relation. As this evaluation is a difficult calculation, only 
a finite number of the spherical harmonic coefficients 
for any orientation dependent function can be handled. 
It has been found [2,17] that for the interaction poten- 
tial described by equation (13) the inclusion of all the 
harmonics up to indices I , ,  I, = 4 makes the series fully 
convergent. As C-harmonic coefficients contribute to the 
free-energy of uniaxial liquid crystals composed of mole- 
cules of axial symmetry having even I , ,  I, indices, all the 
numerical results obtained are for the 14 harmonics 
(values of 11121: 000, 200, 220, 221, 222, 400, 420, 440, 
421,422, 441, 442, 443 and 444). 

The PY closure relation has been solved by Ram and 
Singh [17] for the gHER, hHER and CHER harmonics for 
x = 3.0, 3.25, 3.5 and 4.0. Taking their results we have 
evaluated in I [2] C-harmonics for quadrupolar and 
dispersion interactions for x = 3.0. We evaluate here 
these harmonics for x = 3.25, 3-5 and 4.0. With known 
C-harmonics the values of the structural parameters are 
calculated as a function of reduced density p,* (=p,di) 
where do is the molecular diameter. For the electrostatic 
(dd, dq, qq) interactions the nonvanishing potential har- 
monic coefficients in the Body-fixed (BF) frame are; 
uffo, u?fl, u $ ~ ,  u4j0, ~ $ 5 ,  and ~ 4 4 ~ .  In the case of 
the repulsive and dispersion interactions all the 14 
u-harmonic coefficients are nonvanishing. From the fact 
that the BF C-harmonic coefficients with only even 1, 
and 1, indices contribute to the free-energy of a uniaxial 
mesophase of axial molecules and that the BF CHER- 
harmonic coefficients only survive for the even values of 
I, and 1 2 ,  it is concluded that only those of I ,  and 1, will 
contribute to the free-energy which have nonvanishing 
u-harmonics for the even values of I, and 1,. For these 
reasons it was concluded [2] that the dd and dq 
interactions do not contribute to the free-energy and 
hence to the elastic constants. 

For the numerical calculation of the elastic constants 
we need to know the values of the order parameters 
Pz, P4,,  , . , as a function of temperature and density, the 
- -  
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80 1 Elastic constants of uniaxial nematics 

structural parameters as a function of x and density, 
and the values of the potential parameters Eo/k, do and 
quadrupole moment 0. Here E~ is a constant with unit 
of energy. While reasonably accurate values of F2 from 
experimental data are available for a number of systems 
over a range of temperatures, our knowledge of F4 is 
scant. No reliable values are available for the other 
parameters. 

We evaluate the contributions of the individual terms 
of the series 

Ki= Ki(2,2) + 2Kj(2,4) + Kj(4,4) (14) 
for the repulsive (HER), dispersion and quadrupole 
interactions for the different values of x (= 3.0, 3.25, 3.5 
and 4.0). In table 1 these contributions are given for x = 
3.0 and 4.0. A number of observations can be made 
from this table. The series (14) is found to converge 
rapidly for prolate molecules interacting via the 
interaction potential (13). For a given x ,  as already 
known, we find K y ( 2 , 2 )  = KYER(2,2) > KyER(2,2). 
KYER# KYER is primarily due to the contribution of 
2KyER(2, 4). In particular, KYER(2, 4) is positive whereas 
both KYER(2,4) and KyER(2,4) are negative. As a result 
we find that KYER > KYER > KYER, which is in good 
agreement with other studies [ 18,191. Further, the ratio 
(KYER/KFER) > (KyER/KyER), which is in accordance with 
the simulation work [19]. As the values of x increases, 
the contributions of KYER and KYER increase but KFER 
decreases. The ratio KYER/KYER increases whereas the 
ratio KYER/KyER decreases. Although the absolute values 
of ICYER increase linearly with temperature, the values 
of their ratios do not change with temperature. 

For the dispersion interaction we find that 
KZdis > KT&'" > Ktdis for x = 3.0 but the difference in the 
values of these constants decreases as x increases, and 
for x =4.0 their values become almost equal. Here 
KT(=doe;'Ki) is the reduced elastic constant. Both 

as x increases. In the case of the quadrupole interaction, 
we observe that for a given x and quadrupole moment 
the contribution of KTqq(4,4) is much smaller as com- 
pared to K:qq(2,2). As the value of the quadrupole 
moment increases the contributions of each individual 
term of the series (14) increases significantly, and also 
in the case of Kfqq. The numerical values of both the 
elastic constants KTqq and K$qq are positive whereas 
the value of K,*qq is negative. For x = 3.0 the value of 
KTqq is slightly smaller than KTqq, but the trend is 
reversed in case of x = 4-0. With the increase of x it is 
observed that the contributions of each term of the series 
to the elastic constant decrease. 

In table2 we list the relative contributions of the 
HER, dispersion and quadrupole interactions to the 
elastic constants for x = 3 at 400 K and x = 4.0 at 350 K. 

p d i s  and Kfdis increase with x whereas KZdis decreases 

We also give the values of the ratios K 3 / K i  and K,/K, 
and compare the results with the experimental data 
of p-azoxyanisole (PAA) and 4'-n-octyloxy-4-cyanobi- 
phenyl (80CB). For the calculations we have used the 
following values of the parameters: 

(i) for x = 3.0, p t  = 0.3151, P2 = 0.5541, p4 = 0-2294, 
Eo/k = 575 K, do = 5A, 0 = -20 x 10-26esu, and 

(ii) for x = 4.0, p,* = 0.2082, p2 = 0.6075, F4 = 0.2834, 
Eo/k = 600 K, do = 5.5 a and 0 = - 25 x esu. 

These values of p ; ,  F2 and p4 correspond to the iso- 
tropic-nematic transition in a hard core system [17]. 
Other parameters for x = 3 and 4 crudely simulate, 
respectively, the nematic phases of PAA and 80CB. 
Taking the values of Eo/k = 525 K and do = 5.36 a 
Tsykalo and Bagmet [21] found in their molecular 
dynamics (MD) study good quantitative agreement for 
the temperature dependence of the order parameter 
between the calculated and experimental data of PAA. 
The value of eo/k for PAA was estimated by Singh and 
Singh [ 14,223 on the assumption that the liquid (crys- 
talksolid transition temperature at the triple point obeys 
a simple scaling law, Tt(= kT,/Eo) = c', where c' is a 
constant independent of x .  Taking c' = 0.68 (reduced 
triple point temperature for the Lennard-Jones (12-6) 
system) they found that Eo/k = 575 K. This is a fairly 
reasonable value because it gives the energy of inter- 
action in the minimum energy configuration of two PAA 
molecules equal to 8.37 kJ mol-' which is in good agree- 
ment with the values obtained from an approximate 
quantum mechanical calculation [ 231. 

In the calculation we observe that the absolute values 
of the elastic constants are sensitive to the values of the 
molecular parameters. However, we have made no 
attempt here (see table2) to fit the experimental data 
by adjusting these parameters. We prefer to show the 
relative contributions of the different branches of interac- 
tion. Further, we note that it is difficult to measure the 
absolute values of the elastic constants [6-91. 
It is the ratios K 3 / K ,  and K 2 / K 1  which are measured 
with the greatest accuracy. From the MD simulation 
for a HER system of x = 3 at p,* = 0.354, Allen and 
Frankel [ 191 found that KiHER)/KlHER) = 0.929 and 
K$HER)/K(lHER) = 3.414, whereas the values obtained by us 
here for p,* = 0.315 are 0.829 and 3,222, respectively. 
Our results for the HER system are in good agreement 
with that of the Allen and Frankel [19] results. We 
find that at each x the ratios KLHER)/KiHER) and 
KiHER)/KiHER) are higher than the experimental values. 
Further, it can be seen from table 2 that the inclusion of 
dispersion and quadrupole interactions reduces the 
values of K 2 / K 1  and K3/Ki.  This trend is in accordance 
with experimental results. In both the cases for x = 3  
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0.5- 

p2 
0.4 

Table 2. Contributions of the different interaction terms to each elastic constant and a comparison with the experimental values. 
The values of K i  are given in units ol 10-'dyne. 

Experimental valucs 

PAA 
Calculated values 

Y I Kj'ER KPiS k'pq Ki (Ref. [20]) (Ref. C6l) 
_____ . ~~ 

3.0 1 5.8361 1.7822 2-3538 9.972 1 7.00 6.66 
2 4.839Y 3.2653 - 0.0708 8,0344 4.30 3.37 
3 18,8058 2.9909 1.5810 23.3777 17.00 11.25 

K J K ,  0-829 0.805 0.6 14 0.506 
K,!K, 3.222 2.344 2,428 1.689 

80CR (Ref. [ lo])  
I 4.7 100 2.5338 0.8034 8.0472 3.10 
2 3.7940 2.6078 - 0.0066 6.3952 2.13 
3 16,0849 2.941 6 0.8893 19.9 158 3.60 

K , i K ,  0.805 0.794 0.687 
K,:'K, 3,415 2.475 1.161 

- 

.. 

3.0 

and 4. the theoretical values of these ratios are in good 
agreement with the experimental values. 

3.1. Vuriution of elastic constants with temperature 
The temperature dependences of the elastic constants 

are mainly due to the variation of the order parameters 
p, and P4 with temperature. While accurate values of p2 
are available for a number of systems over a range of 
temperature and density from experiment, our know- 
ledge of p4 is scant. However, with a little reflection one 
finds that the values of the ratio F4/F2 should decrease 
with temperature and increase with density and the 
length-to-width ratio. Here we calculate the values of K ,  
using the expcrimental values of r', for PAA and XOCB. 
For PAA two sets of calculations are performed corres- 
ponding to p4 values as estimated from p, =e and 
P, = pi. Figure 1 shows the variation of P, and P,jP, 
(=pi) with temperature for PAA. It can be seen that 
the approximated values of P 4 / P 2 = z  are in good 
agreement with the experimental data [ 241 of deuteri- 
ated PAA, as obtained from coherent neutron scattering 
experiments. In the case of F, we first put all the 
experimental data [2S] of F2 on the curves and then 
draw a smooth curve. The values of P, used in the 
calculation correspond to this smooth curve. 

Figure 2 shows the contributions of the individual 
terms K ~ ( l l , 1 2 )  and KF for x = 3.0 as a function of 
temperature. We see that KT # Kg because of the contri- 
butions of the term involving F,/p2. The contribution 
of this term to KF is positive for i = 3 and negative for 
i = 1 and 2. The contribution of the terin involving 
(p4/p2) IS positive for i = 1 and 3 and negative for i = 2 
andlK:(4,4)1 >IKf(4,4);>/KT(4,4)1.TheKT termhas 
a weak temperature dependence but a pronounced tem- 
perature influence is observed for Kg.  

A comparison between the experimentally measured 

- -  

. 
0 

' J  
% I  q 

o.2 i 
0.1 

0 94 0 96 0 98 10 

T / T ~ ~  - 
Figure 1 Values of order parameters and -p4 pz as a 

function of temperature,( 0 )  experimental Pz 1251 (see 
text); (;) experimental P,/Fz of deuteriated PAA [24]> 
full-linc curve is estimated as &/F2 N ti;? 

[ 6,7] (for PAA) and theoretically calculated (x = 3)  
values of elastic constants are made in figure 3. Two sets 
of theoretical values, as obtained by estimating P,/P2 = 
p2 and P,/P,=E.  are plotted. The contributions of 
H E R  interactions are also plotted in the figure. It can 
be observed that the calculated elastic constants are 
consistent with the experimental data [6-91. These 
results show the important role of repulsive as well as 
attractive interactions. The theoretical values of KT ah 
obtained by using PJP,  = P; are closer to the experi- 
mental data as compared to those obtained from 

The calculated values of the ratios KLHER1:K\HER'. 

- -  

F41P, = P,. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
9
:
0
8
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



Elastic constants of uniaxial nematics 803 

10 

- r 
m g 40- 
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% lx 
I m  L 
w 3.0- 

2.0- 

"TNI - 
Figure 2. Contribution of individual terms of the KT(I,, 1,) of 

the series (14) and K: for x = 3.0 as a function of 
t_emperature. The values plotted correspond to 
PJP, N P ,  and Kf = d&'Ki. -2 

- 

* m  Y - 1.2- 
*i 

0 6 -  

K * ~ ~ ~  -- I 
-- 1 [I)------ 

0.2 I 
0.94 0.96 0.98 

T / ~ N I  - 
Figure 3. Comparison between the calculated and experi- 

mental [6,7] values of the reduced elastic constants KT 
for x = 3.0. Th_e c_lcul_ted va_lue_s shswn as I and I I  
correspond to P,/P2 N P2 and P,JP2 N P, ,  respectively. 

KiHER)/KIHER), K 2 / K ,  and K 3 / K ,  for x = 3.0 are com- 
pared with the experimental data [6,7] of PAA in 
figure 4. It can be seen that at all temperatures the 
inclusion of the attractive interactions decreases the 
ratios K2/Kl and K3/K1. The ratios K,/K,  and K3/Kl 
both decrease with increasing temperature. The ratio 
K, /K ,  lies within 0.624-0614 (for the first set) and 
0.608-0.584 (for the second set) and is more or less 
independent of temperature. On the other hand, a signi- 
ficant decrease in the ratio K 3 / K ,  with temperature is 
observed. A similar trend in the variation of ratios 
K2/Kl and K31K, with temperature has also been 
observed in other substances [7,8,26,27]. 

In addition to the above ratios the other quantity 
which one can find fairly accurately from the experiments 
is K , / K  where = ( K ,  + K ,  + K3)/3 .  In figure 5, we plot 
this quantity for x = 3 as a function of temperature. We 
find that the values of the ratio K , / K  have a weak 
temperature dependence. The value of K , / K  decreases 
with temperature whereas the values of K,/K and K,IK 
increase with temperature. The calculated values of K i / K  
(second set P, = pz) are in good agreement with the 
experimental values [6-91. We also find in the calcula- 
tion that the values of K , / K  are only slightly affected 
by the values of x. While K , / E  increases with x ,  other 
ratios K , / K  and K , / K  decrease with x .  

In order to compare the calculated values of the elastic 

\ 
\ 

- \  
- -- -- I--,- 

--- -- - - 11- - - 
* a  

111 

0.96 I 0.98 I 

1.0 

T I T "  - 
Figure 4. Comparison between the calculated and experi- 

mental values (e) 161 and (M) [7] of the ratio of elastic 
constants for PAA as a function of temperature. The 
symbols I and I1 have the same meanings as in figure 3. 
The HER contributions are shown by dashed lines. 
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*.- Y 
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0.94 0.96 0.98 

T / T ~ ~  - 
Comparison between the calculated and experi- 

mental [7] values of the ratio Ki/K for PAA as a function 
of temperature. The symbols I and I1 have the same 
meanings as in figure 3. (a), ( W )  and ( A )  represent, 
respectively, the experimental values of K ,  /K, K,IK and 
k ' , / K .  Here & = ( K ,  + K ,  + K,)/3. 

Figure 5 .  

- 

- 

- 

- 

- 

- 

- 

constants for .Y = 4.0 with the experimental data [lo] 
we perform a model calculation. Madhusudana and 
Pratibha [lo] have measured the elastic constants K , ,  
K ,  and K ,  and the order parameter P2 of 80CB in the 
nematic phase as a function of temperature. For the 
calculation we estimate the fourth-Legendre order para- 
meter as p4 = P;. The calculated values of Ki are com- 
pared with the experimental values in figure6 A 
comparison between the theoretical and experimental 
values of the ratios K , / K ,  are made in figure 7. In view 
of the uncertainties in the experimental data it can be 
concluded that the theoretical results agree well with thc 
experimental ones. The calculated values of K ,  and 
K , / K ,  are large as compared to the experimental values. 
It can further be observed from these figures that as 
expectcd physically when we approach the nematic- 
sinectic A transition a signature of pronounced increase 
in the values of K ,  and K ,  are clearly observed. 

4. Summary and conclusions 
A unified molecular theory as developed by us [2] 

for the elastic constants of ordered phases of molecular 

0.01 I I ! I  
0.'96 0!97 0.98 0.99 1.0 

TAN T/lNI- 

Figure 6. Comparison between the calculated and experi- 
mental [lo] values of the reduced elastic constants for 
80CB as a function of temperature. (0 )  Represents the 
values [ 101 of p2 used in the calculation. The broken and 
full line represent, respectively, the experimental and 
calculated values of K:. 

systems (liquid crystals, plastic crystals and crystalline 
solids) has been used to calculate the elastic constants 
of the uniaxial nematic phase composed of molecules of 
axial symmetry. This theory is based on the density 
functional formalism [ 11 and forms exact relations for 
the elastic constants in terms of the order parameters 
characterizing the nature and amount of ordering, and 
in terms of the correlation functions of an effective liquid. 
The density of the effective liquid is obtained by adopting 
the scheme of Denton and Ashcroft [ 121. 

In our theory the values of the order parameters 
(F2, F4,. . .), the structural parameters (Jflf2f) involving 
spherical harmonic coefficients (C,lL2f(r)) of the DPCF of 
an effective fluid as a function of temperature and 
density, and the information about the constituent mole- 
cules, namely, electric multiple moments, length-to-width 
ratio, diameter, etc., are inputs for the evaluation of thc 
elastic constants. The values of P, obtained from the 
experimental observations have been used in the calcula- 
tion. No reliable values are available for p4; the values 
estimated by us from P4/P, N are close to the experi- 
mental values [24] for deuteriated PAA. While one can, 
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2 2  
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~ . = *  
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. * * *  
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0.96 0.97 0.98 0.99 1.0 

T / T N I  - 
Figure 7. Comparison between the calculated and experi- 

mental [lo] values of the ratio of the elastic constants 
for 80CB as a function of temperature. 

in principle, obtain from the quantum mechanical calcu- 
lations the values of the potential parameters, at  present, 
our knowledge of them is scant. In principle, the 
ClIlJr) harmonics for a given system can be obtained 
either by solving the Ornstein-Zernike (OZ) equation 
with suitable closure relations [ 13,161 or by adopting 
a perturbation expansion method [ 14,151. These har- 
monic coefficients have been obtained by solving the 
OZ equation using the Percus-Yevick closure relation 
for a HER system [ 171 and using a perturbation meth- 
od for a model system interacting via quadrupole 
and dispersion interactions in addition to hard-core 
repulsion. 

In the calculation it has been found that the absolute 
values of the elastic constants are sensitive to the values 
of the molecular parameters. The values of the elastic 
constant ratios for the HER system are in good agree- 
ment with the simulation values [19]. The inclusion of 
dispersion and quadrupole interactions in the calculation 
reduces the values of the ratios K,/K,  and K,/K,. The 
variations of the elastic constants and of their ratios 
K,/K,  and K J K ,  with temperature have been studied. 
It is observed that the calculated values of the elastic 
constants and their ratios K J K , ,  K J K , ,  K , / K ,  K , / K  

and K,IK  for x = 3.0 are in good agreement with the 
experimental values of PAA. For x = 4-0 the calculated 
values agree well with the experimental values for 80CB. 
As discussed above, these values are sensitive to the 
values of the input parameters. As our knowledge of 
these input parameters improves, more accurate values 
for the elastic constants will be obtained. 
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